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1 Introduction

Heisenberg’s uncertainty relation is one of the fundamental principles of quantum mechan-

ics. This principle only involves the quantum effects of matters, and it does not directly

describe the quantum fluctuations of spacetimes. However, many efforts have shown that

Heisenberg’s principle may suffer a modification [1]–[13], in the context of quantum gravity.

Concretely, a generalized uncertainty principle(GUP) reads

∆x ≥ ~

∆p
+

α

~
∆p, (1.1)

where α ∼ G. The second term on the r.h.s means a new duality, which is historically

related to the scattering amplitude of high energy string [1, 3] and the spacetime un-

certainty principle [2, 4]. This term is also attributed to gravity in some gedanken ex-

periments [7, 8, 10, 12]. Different from Heisenberg’s principle, GUP restricts the shortest

distance that we can probe (i.e. ∆x ≥ 2
√

α ∼ lp). This agrees with the belief that Planck

length is a fundamental scale in quantum gravity.

Since uncertainty principle is of great importance to quantum physics, GUP has caused

extensive interests and arguments. In particular, GUP’s effects on the thermodynamics of

a Schwarzschild black hole have been discussed by a heuristic method [13]. The crucial

idea therein is that ∆x and ∆p are identified as the black hole’s size and temperature

respectively. An interesting result is that the black hole mass is not allowed to be less

than a scale of order Planck mass, which suggests a black hole remnant. Although GUP’s

impacts on black hole thermodynamics have been discussed in the literature [13]–[28], a

universal expression is still absent.

In the semiclassical framework, Hawking temperature of a stationary black hole is

proportional to the surface gravity, i.e.

TH =
~κ

2π
, (1.2)
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where Planck constant reveals the quantum nature of black hole radiation. In the Beken-

stein’s original work [30], Heisenberg’s uncertainty principle is crucial to the linear relation

between Hawking temperature and surface gravity.1 In our opinion, GUP changes the

semiclassical framework to a certain context, and the semiclassical black hole tempera-

ture (1.2) should suffer a modification. How the expression (1.2) is corrected by GUP?

This research explores a temperature expression in the sense of GUP, which is expected

to be valid for more general black holes besides Schwarzschild case. We discuss a class of

static and spherically symmetric black holes, as well as a Kerr-Newman black hole. The

temperatures of these black holes have the same form. The information capacity of a black

hole remnant is discussed in de Sitter spacetime, in terms of a Bousso’s D-bound. Enlight-

ened by refs. [16, 29], we follow the Bekenstein’s original work [30], and analyze a gedanken

experiment that a neutral particle just outside the horizon is absorbed by the black hole.

This research takes the units G = c = kB = 1.

2 Black hole thermodynamics

2.1 General consideration

This subsection makes a note of the basis for further discussion. Let us start with the first

law of black hole mechanics [30, 34]

dM =
κ

8π
dA +

∑

i

Yidyi, (2.1)

where the terms
∑

i Yidyi represent the work done on the black hole by an external agent. yi

represents one of the black hole’s variables such as electronic charge or angular momentum;

Yi is the generalized force corresponding to the variable yi, e.g. electrostatic potential or

angular velocity. The above formula is a result of classical general relativity. However, it has

been endowed with thermodynamic meaning since Hawking radiation was discovered, i.e.

dM = TdS +
∑

i

Yidyi. (2.2)

Corresponding to the standard temperature (1.2), the black hole entropy is expressed as

SBH = (4~)−1A, i.e. the so-called Bekenstein-Hawking entropy. However, this simple

relation is a semiclassical result. In more general situations, the entropy of a black hole is

assumed to be a function of its area [30], S = S(A). Following from (2.1) and the definition

of thermodynamics, the temperature is expressed as

T =

(

∂M

∂S

)

yi

=
dA

dS
×

(

∂M

∂A

)

yi

=
dA

dS
× κ

8π
, (2.3)

where the variables yi are fixed. The temperature expression is determined by the relation

between the entropy and area. In order to find the concrete form of S(A), we consider

1This point is also stressed in ref. [33], where the linear relation TH ∼ ~κ can be obtained by another

heuristic method via Heisenberg’s uncertainty principle.
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a particle captured by the black hole. When the particle disappears, on one hand, its

information is lost to an observer outside the horizon; on the other hand, the smallest

increase in the area of a Kerr-Newmann black hole is given by [30]

∆A ∼ bµ, (2.4)

where b and µ are the particle’s size and mass, respectively. Identifying the loss of infor-

mation with the increase of black hole entropy, we obtain

∆S ≃ dS

dA
∆A.

According to information theory, the loss of information is one bit at least, i.e. (∆S)min =

ln 2. The next step is to consider the physical limitations on µ and b, since they are

crucial for ∆A to be minimized. For a classical particle (point-like object), (∆A)min = 0.

However, in quantum mechanics, a particle is described by a wave packet and a definite

trajectory does not exist. The width of wave packet is defined as the standard deviation of

x distribution (i.e. the position uncertainty), which can be interpreted as the characteristic

size of the particle (b ∼ ∆x). Furthermore, the momentum uncertainty is not allowed to

be greater than the mass (∆p ≤ µ), in the process of measuring the particle’s position.

Otherwise the relativistic effects lead to the creation of a partner of the particle and make

the measurement meaningless. Thus the expression (2.4) is deduced to

∆A ∼ bµ ≥ ∆x∆p. (2.5)

The smallest increase in area cannot be arbitrarily small and it is restricted by the un-

certainty relation of quantum mechanics. In the Bekenstein’s insightful work, Heisenberg

principle is utilized to identify the particle’s size with the Compton wavelength of itself,

and then the minimum increase in horizon area is given by ∆A ∼ l2p. This results in

∆S

∆A
= const,

which means the linear relation between the black hole entropy and the horizon area. GUP

will correct the Bekenstein’s result. Substituting (1.1) into (2.5), we have

∆A ≥ γ1~

[

1 +
α

~2
(∆p)2

]

, (2.6)

where γ1 is a calibration factor. In order for ∆A to be minimized, we should take the

smallest uncertainty of momentum. Following from (2.6), the minimum increase in area,

(∆A)min, would be a constant if ∆p → 0. At a first glimpse, there seems to be no correction

to the Bekenstein’s result. However, ∆p → 0 means ∆x → ∞. For a particle captured

by black hole, ∆p is not allowed to be arbitrarily small, since the particle is confined

within a finite region and ∆x is finite. (∆A)min is therefore no longer a constant, which

results in some corrections to the linear relation between entropy and area. In the following

subsections, a static and spherically symmetric black hole as well as an axially symmetric

Kerr-Newman black hole are discussed respectively.
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2.2 A class of static and spherically black holes

We consider a static and spherical black hole as follows

ds2 = −F (r)dt2 + F−1(r)dr2 + r2(dθ2 + sin2 θdφ2),

where the horizon is located by F (r0) = 0. The above line element describes a class of

static and spherically symmetric black holes, such as Schwarzschild, Reissner-Nordström

and their partners in (anti-)de Sitter spacetime. When a particle is captured by black hole,

∆x should not be greater than a specific scale which minimizes ∆A. This characteristic size

should be related to the black hole, if (∆A)min is expected to reflect an intrinsic property

of the horizon. For a static and spherically symmetric black hole, it is identified with the

twice radius of horizon,2 i.e.

2r0 ≥ ∆x ≥ ~

∆p
+

α

~
∆p, (2.7)

which imposes a constraint on the momentum uncertainty as follows

~

α

[

r0 −
√

r2
0 − α

]

≤ ∆p ≤ ~

α

[

r0 +
√

r2
0 − α

]

. (2.8)

So the product of ∆x and ∆p yields

∆x∆p ≥ ~

[

1 +
α

~2
(∆p)2

]

≥ 2~

α

(

r2
0 − r0

√

r2
0 − α

)

= ~
′, (2.9)

where the second inequality is obtained by taking the lower bound of ∆p. The above

inequality can be rewritten as a Heisenberg-type uncertainty principle, ∆x∆p ≥ ~
′, where

~
′ may be regarded as an effective Planck constant. Thus the increase in area satisfies

∆A ≥ γ1~
′ =

2γ1~

α

(

r2
0 − r0

√

r2
0 − α

)

. (2.10)

When the particle vanishes, the information of one bit is lost and the black hole acquires

the increase in entropy (∆S)min = ln 2. On the other hand, the minimum increase in the

horizon area is given by the lower bound of (2.10), which is denoted by (∆A)min. We obtain

dA

dS
≃ (∆A)min

(∆S)min

=
2γ1~

α ln 2

(

r2
0 − r0

√

r2
0 − α

)

. (2.11)

The black hole temperature (2.3) is deduced to

T ≃ κ

8π
· 2γ1~

α ln 2

(

r2
0 − r0

√

r2
0 − α

)

,

2For example, see ref. [13]. This identification is compatible with the suggestion that (∆x)max should

be represented by the irreducible mass(for a rotating black hole), which is based on the consideration that

the entropy is unchanged in a reversible process(see the discussion in the next subsection).

– 4 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
6

which is not only related to the surface gravity but also to the black hole size. It should

reproduce the standard result T = κ/2π, as α → 0. This requires that the calibration

factor yield γ1 = 4 ln 2. Thus we obtain

T ≃ ~
′κ

2π
, (2.12)

which is the expression for the temperature of a static and spherically symmetric black

hole. Comparing the standard formula (1.2) with the revised version (2.12), we find that

the latter can be obtained from the former by substituting ~
′ for the Planck constant. It

suggests that ~
′ play the role of an effective Planck constant.

The expression (2.12) can be understood by reexamining the efficiency of a Geroch

process. This gedanken experiment imagines a machine operating between a black hole

and a remote reservoir.3 In this process, a box is filled with black body radiation from the

reservoir and lowered down to the black hole surface. After emitting the radiation into the

black hole, the box is moved away from the black hole. The over-all process converts heat

into work with the efficiency [30]

η = 1 − γ2κℓ, (2.13)

where ℓ is the size of the box, and γ2 is a coefficient factor to be determined. The smaller

ℓ is, the greater η is. In practical situations, it is reasonable that the box’s size is required

to yield ℓ ≤ 2r0. This is also necessary to emit the total radiation into the black hole,

otherwise the photons with lower energy will not contribute to the Geroch process. On the

other hand, the box must be big enough for the wavelengths of the radiation, and ℓ has a

minimum value which is related to the temperature of radiation, TR. To find the relation

between the temperature and efficiency, we rewrite (2.13) as

η = 1 − γ2(ℓTR)
κ

TR
. (2.14)

As the mean energy of thermal photons, the radiation temperature yields TR > ǫ, where ǫ

is the photon’s minimum energy which is given by the lower bound of (2.8). Thus we obtain

ℓTR > ǫℓ =
~

2α

(

ℓ2 − ℓ
√

ℓ2 − 4α
)

≥ 2~

α

(

r2
0 − r0

√

r2
0 − α

)

= ~
′,

where we have considered ℓ ≤ 2r0. Thus the efficiency (2.14) yields

η < 1 − γ2

~
′κ

TR
. (2.15)

Comparing it with the efficiency of a heat engine operating between two reservoirs, we

find that the expression ~
′κ plays the role of the black hole temperature. This agrees

with (2.12), up to a constant factor.

3For details, see ref. [30].
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The black hole entropy is given by

S =

∫

dS

dA
dA ≃

∫

(∆S)min

(∆A)min

dA.

Considering (2.11) and setting γ1 = 4 ln 2, we obtain

S ≃ 1

4

∫

dA

~′

=
π

~

∫
(

r0 +
√

r2
0 − α

)

dr0

=
π

2~

[

r2
0 + r0

√

r2
0 − α − α ln

(

r0 +
√

r2
0 − α

)]

. (2.16)

When r0 ≫ √
α, Bekenstein-Hawking entropy and the log-area correction are presented as

S = (4~)−1(A − απ ln A + · · · ). (2.17)

In the context of the GUP, the heat capacity is given by

C = T
∂S

∂T
=

~
′κ

2π
· ∂S

∂A
· ∂A

∂T

=
1

4

(

∂~
′

∂A
+ ~

′κ−1 ∂κ

∂A

)−1

. (2.18)

Direct calculation gives

∂~
′

∂A
=

1

8πr0

∂~
′

∂r0

= −∆~

4f
.

where ∆~ = ~
′ − ~, f = f(r0) = πr0

√

r2
0 − α. The heat capacity (2.18) is deduced to

C = C0f

[

~
′

~
f − C0∆~

]−1

, (2.19)

where

C0 = TH
∂SBH

∂TH
= (4~)−1κ

∂A

∂κ
,

is the standard heat capacity defined by the Hawking temperature (1.2) and Bekenstein-

Hawking entropy.

In the derivation of (2.12), we assume that the black holes in an asymptotically de Sitter

spacetime also yield the law (2.4). As an example, we consider a Reissner-Nordström-de

Sitter black hole whose horizon radius r0 is determined by

0 = F (r0) = 1 − 2M

r0

+
Q2

r2
0

− Λ

3
r2
0.

The first law is similar to eq. (2.1), where the surface gravity is [31]

κ =
F ′(r0)

2
= r−1

0

(

M

r0

− Q2

r2
0

− Λ

3
r2
0

)

= (2r0)
−1

[

1 − Λr2
0 − Q2

r2
0

]

. (2.20)
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When the black hole captures a neutral particle, the first law becomes

dM =
κ

8π
dA. (2.21)

On the other hand, based on a Bekenstein-type analysis, the smallest increase in the black

hole mass is given by [32]

∆M ∼ bµκ, (2.22)

where b and µ are the particle’s size and mass respectively. Considering (2.21) and (2.22),

the smallest increase in horizon area is ∆A ∼ bµ, which is just (2.4).

Let us give a remark on the difference from ref. [13]. In ref. [13], ∆x and ∆p are iden-

tified with the black hole’s radius and temperature respectively. This leads to a deduction

that the temperature becomes an explicit function only of the black hole size, and cannot

reproduce eq. (1.2) as α → 0. A possible extension of ref. [13] is to identify ∆x with the

inverse surface gravity [16], and then the GUP (1.1) would give the temperature as follows

T ′ =
~κ

π
(

1 +
√

1 − ακ2/π2

) , (2.23)

which can reproduce the standard result (as α → 0). Obviously, the above expression is

different from eq. (2.12). The entropy would be

S′ =

∫

dM − Yidyi

T
=

∫

κ

8πT
dA

=
1

8~

∫

(

1 +
√

1 − ακ2/π2

)

dA

=
A

4~
− α

16π2~

∫

κ2dA + · · · . (2.24)

The higher order terms of α can be ignored, when a big black hole is considered(ακ2 ≪ 1).

Considering (2.20), the entropy (2.24) becomes

S′ =
A

4~

(

1 +
αΛ

8π2

)

− α

16π~
(1 + 2Q2Λ) ln A − αΛ2

2~ × (16π)3
A2 − Q2α

2~A
+

πQ4α

2~A2
. (2.25)

Besides the correction to the prefactor of Bekenstein-Hawking entropy, there is a term of A2.

We also notice that the charge Q appears in (2.25). Generally, (2.24) is an explicit function

of A and other variables(e.g. charge and angular momentum), since κ cannot be expressed

as a function only of A. These features are distinct from the entropy expression (2.17).

2.3 Kerr-Newman black hole

For a Kerr-Newman black hole of mass M , charge Q and angular momentum J = aM , the

first law of mechanics is [30]

dM =
κ

8π
dA + φdQ + ΩdJ, (2.26)

– 7 –
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where A = 4π(r2
++a2) is the area of the event horizon. In Boyer-Lindquist coordinates [36],

the location of the horizon is given by

r+ = M +
√

M2 − Q2 − a2. (2.27)

Here we don’t present the expressions for the surface gravity κ, electric potential φ, and

angular velocity Ω, since they are unimportant for the following discussion.4

In the previous subsection, we suggest that for a particle captured by the black hole,

the position uncertainty ∆x yields

∆x ≤ 2ρ0, (2.28)

For a static and spherically symmetric black hole, the characteristic size ρ0 is identified

with the twice radius of the horizon. We are confronted with a question of understanding

the meaning of ρ0, when a rotating black hole is considered. At a first glimpse, it appears

natural that ρ0 is represented by r+ [35]. However, this proposal is doubtable, although it

is workable for the static and spherically symmetric cases. This is because Boyer-Lindquist

coordinates are different from ordinary polar coordinates. For instance, in rectangular

coordinates (X,Y,Z), r = const represents an ellipsoid rather than a sphere. Concretely

speaking, the coordinates (r, θ, φ) are related to the rectangular coordinates by [36–38]

X =
√

r2 + a2 sin θ cos ϕ∗,

Y =
√

r2 + a2 sin θ sin ϕ∗, (2.29)

Z = r cos θ,

where

ϕ∗ = ϕ − tan−1 a

r
− a

∫ r

∞

dr

∆
.

Following from (2.29), we obtain

X2 + Y 2

r2 + a2
+

Z2

r2
= 1, (2.30)

which is axially symmetric. Obviously, the surface of a Kerr-Newman black hole(r → r+)

is a confocal ellipsoid. There are two characteristic sizes: r+ and
√

r2
+ + a2. Which is ρ0?

In order to minimize ∆A, we choose the latter, i.e.

ρ0 =
√

r2
+ + a2. (2.31)

One of the evidences for (2.31) is that the absorption cross section for a Kerr-Newman

black hole is proportional to its area [39], σabs ∼ A = 4πρ2
0, which can be interpreted by

the aid of a two-body process in an effective string theory that describes the collective

excitations of the black hole at weak coupling [40–42]. This means that ρ0 is indeed a

characteristic size in the absorption process.

4The expressions for these quantities were presented in the literature, e.g. ref. [30] and some text books.
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Furthermore, as argued immediately, (2.31) is a reasonable choice in the sense of ther-

modynamics, which can be explained along another line of arguments. Let us return

to (2.28), where ρ0 is to be determined. Replacing r0 with ρ0 and repeating the procedure

from (2.7) to (2.11), we obtain

(∆A)min

(∆S)min

=
2γ1~

α ln 2

(

ρ2
0 − ρ0

√

ρ2
0 − α

)

. (2.32)

If ρ0 is identified directly with r+, (2.32) becomes

(∆A)min

(∆S)min

=
2γ1~

α ln 2

(

r2
+ − r+

√

r2
+ − α

)

=
γ1~

2πα ln 2

[

A − 4πa2 −
√

(A − 4πa2 − 2απ)2 − 4α2π2

]

,

which means that the entropy depends on two quantities: A and a. This contradicts

Bekenstein’s assumption that the entropy of a black hole is a function only of its area [30],

and would lead to a deduction incompatible with thermodynamics. Supposing S = S(A, a),

we have

dS =
∂S

∂A
dA +

∂S

∂a
da

=
∂S

∂A
dA + M−1 ∂S

∂a
(dJ − adM). (2.33)

In a reversible process, the black hole area is unchanged [43, 44], dA = 0. So the change

in black hole mass is attributed to the work done by an external agent which changes the

black hole’s charge and angular momentum, and the first law (2.26) becomes

dM = φdQ + ΩdJ.

eq. (2.33) is therefore rewritten as

dS = M−1 ∂S

∂a
[(1 − aΩ)dJ − aφdQ] , (2.34)

which means dS 6= 0 if (∂S/∂a)A 6= 0, since Q and J are independent variables. Especially

for a neutral black hole, we have

dS = M−1
r2
+

r2
+ + a2

∂S

∂a
dJ.

The black hole entropy could be changed by an external agent which changes the angular

momentum reversibly, if (∂S/∂a)A 6= 0. This means that the entropy is not invariant in

such a reversible process. This contradicts with the basic concept of thermodynamics. The

crucial reason is that ρ0 is improperly interpreted as r+.

What is ρ0? Enlightened by the above discussion, ρ0 should be unchanged in a re-

versible process. This is required by the fact that S and A are invariant in the same process.

Following from (2.32), the black hole entropy is expressed as S = S(A, ρ0), so we have

dS =
∂S

∂A
dA +

∂S

∂ρ0

dρ0.

– 9 –
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dρ0 = 0 as dS = dA = 0, namely, ρ0 is an invariant in a reversible process. For a rotating

black hole in a reversible process, its irreducible mass Mir is unchanged [43, 44], where

Mir =

√

A

16π
=

1

2

√

r2
+ + a2. (2.35)

This similarity implies that ρ0 should be interpreted as the black hole irreducible mass,

ρ0 ∼ Mir. This can be understood in another manner. We notice that (2.32) involves three

quantities of a black hole: the area A, entropy S and the characteristic size ρ0. ρ0 is thus

related not only to A but also to S. In other words, ρ0 is a bridge which crosses the gap

between A and S, hence it must have geometric and thermodynamic meanings. The black

hole irreducible mass agrees with this requirement. On one hand, Mir is related to the

horizon area by (2.35). On the other hand, Mir is the energy that can not be extracted by

a classical process (e.g. Penrose process). In the thermodynamic sense, Mir corresponds

to the degraded energy that can not be transformed into work [30]. As a measure for

the degradation of energy, the entropy is related to the irreducible mass by S = S(Mir).

Thus ρ0 is endued with geometric and thermodynamic meanings by identifying it with Mir.

Therefore, (2.31) is a natural choice in the context of thermodynamics.

The next thing to be done is similar to the previous subsection. Replacing r0 with ρ0,

we obtain the temperature, entropy and heat capacity of a Kerr-Newman black hole, i.e.

T =
~
′κ

2π
, (2.36)

S =
π

2~

[

ρ2
0 + ρ0

√

ρ2
0 − α − α ln

(

ρ0 +
√

ρ2
0 − α

)]

, (2.37)

C = T

(

∂S

∂T

)

J,Q

= C0f

[

~
′

~
f − C0∆~

]−1

, (2.38)

where ρ0 =
√

r2
+ + a2, and

~
′ =

2~

α

(

ρ2
0 − ρ0

√

ρ2
0 − α

)

,

f = πρ0

√

ρ2
0 − α,

C0 =
2πρ2

0(r+ − M)

3M + a2/M − 2r+

.

C0 is the standard heat capacity of a Kerr-Newman black hole. If a Schwarzschild case is

considered, the expressions (2.36)–(2.38) will reproduce the results of ref. [13].

It is easy to check that the expression (2.17) is still valid to a Kerr-Newman black

hole, when ρ2
0 ≫ α. The log-area type corrections have been obtained extensively in the

literature [45]–[55] by several methods, such as conformal symmetry approach [45, 46],

quantum geometry formalism [47–49] and string theory models [50, 51]. A prefactor of

order unity is preferred in these models, although its precise value is in debate. Although

some technical details are to be explored, it is not surprising that (2.17) agrees with the

results obtained by string theory models and conformal symmetry approach, since GUP
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originates from the literature on string theory and is related to the conformal invariance

property of the fundamental string [4–6]. As to the relation between GUP and quantum

geometry approach, it may be understood in an indirect manner. Concretely, we consider

a modified dispersion relation (MDR), which has been suggested in the literature [56, 57]

on loop quantum gravity. Due to the theoretical consistency, MDR should take the form

as follows [18, 29]

E2 = p2 + m2 + θl2pE
4, (2.39)

which leads to a log-area correction to entropy.5 A similar relation has been suggested in

a recently proposed and renormalizable theory of quantum gravity [59, 60], and a log term

has been derived from the same theory too [61].

The link between GUP and MDR may be understood in the following way. On one

hand, GUP changes the fundamental commutation relation of quantum theory; on the

other hand, MDR originates from a quantized spacetime, where the quantum field theory

should be different from that in a classical background. In other words, either GUP or

MDR means a modification of the semiclassical theory, and therefore corrects the black

hole thermodynamics. Certainly, the appropriate forms of GUP and MDR are crucial for

the consistent correction to black hole entropy. For example, we consider a revision of

generalized uncertainty principle [62]

∆x ≥ ~

∆p
+ α1lp + α2l

2
p(∆p). (2.40)

Following Bekenstein’s analysis, we find that a
√

A correction associated with the term

linear in lp can also be derived from (2.40). This is inconsistent with the result obtained

by quantum geometry approach.

3 Black hole remnant

When we talk about a black hole remnant, we refer to a ground state that the thermal and

non-thermal radiances vanish. This means that when a Kerr-Newman black hole decays

to its ground state, it will lose all the initial charge and angular momentum, otherwise

its energy can be extracted by Penrose process and superradiance [37, 44]. Therefore

a Schwarzschild case was seriously considered in ref. [13]. In the semiclassical theory, a

Schwarzschild black hole would evaporate to zero mass, and C0 → 0 as M → 0. However,

GUP results in two differences:

(i) the black hole acquires a nonzero minimum mass of order
√

α;

(ii) the heat capacity vanishes as M → √
α/2. This suggests the black hole’s “zero point

energy” be elevated to a higher scale. Therefore GUP may provide a mechanism to

prevent a black hole from complete evaporation [13].

5The term linear in lp is absent in (2.39), otherwise it will lead to a
√

A correction [18, 29]. Furthermore,

this term may produce an unstable world [58].
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A remnant can be derived from a dynamic black hole too. Considering a Vaidya black

hole [63], its horizon is located by [64]–[66]

rH =
2m

1 − 4ṁ
,

where ṁ = dm/dv is the mass loss rate. GUP restricts the black hole’s radius by rH ≥√
α, i.e.

2m

1 − 4ṁ
≥

√
α. (3.1)

For an evaporating black hole, its mass always decreases with time, i.e. ṁ < 0. Consider-

ing (3.1), we obtain

0 ≤ −4ṁ ≤ 2m(v)√
α

− 1,

where ṁ = 0 denotes a black hole which stops evaporating. Obviously, ṁ → 0 as m(v) →√
α/2. Hawking radiation is shut off when the black hole evaporates to a Planck scale mass.

Black hole remnant has been suggested as an information loss reposition to resolve

the black hole information problem [67, 68]. The remnant is assumed to retain the large

information of the initial black hole although it has a small size and a tiny mass. However,

this idea is questionable since it violates Bekenstein’s entropy bound [69], S ≤ 2πEℓ/~,

where E denotes the energy of the system of interest and ℓ the size. Following from this

bound, the remnant’s information content is a few bits at most. It is too tiny to resolve

the information loss problem.

Can the situation be improved when a weaker constraint is considered? In an asymp-

totical de Sitter spacetime, the entropy of a matter system is restricted by the so-called D

bound [70]

Sm ≤ 1

4
(A0 − Ac), (3.2)

which is derived from the generalized second law via a Geroch process, where A0 and Ac

are the areas of the cosmological horizons of pure and asymptotical de Sitter spacetimes

respectively. This consideration is motivated by the astronomical observation that the

current universe is dominated by the dark energy. Cosmological constant Λ is the simplest

candidate for the dark energy. The information capacity of a black hole remnant deserves

to be seriously considered in the de Sitter spacetime. D-bound takes the form [70]

Sm ≤ πrgrc, (3.3)

when the gravitational radius of the matter system (rg) is much less than the radius of the

cosmological horizon (rc). For a black hole remnant, its gravitational radius acquires the

minimum value determined by GUP. Replacing
√

α for rg, (3.3) is deduced to

Sr ≤
√

απrc < π

√

3α

Λ
, (3.4)
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where we have considered rc < r0 =
√

3/Λ. Following from quantum statistical mechanics,

the entropy bound (3.4) means that the number of the internal states of a black hole

remnant is less than exp(π
√

3α/Λ). In other words, the information capacity of a black

hole remnant in the de Sitter spacetime is restricted by the bound (3.4), which is concretely

determined by the cosmological constant. In Planck units, the observed value of Λ is about

10−120, and then Sr acquires the value of 1060 bits at most. D-bound allows a remnant

to retain the large information, but the situation does not become optimistic. Considering

a black hole of initial mass M0, its entropy is S0 ≈ 4πM2
0 , which measures the total

information hidden at the moment of collapse. For a solar mass black hole, its entropy is

about 1076 bits, which is about 16 orders greater than Sr. This means that the remnant

cannot retain the total information content of the initial black hole. The discrepancy

becomes more serious when the larger black holes are considered. In order for the entropy

bound (3.4) to be workable, the black hole mass must yield

M0 <

(

3α

16Λ

)1/4

∼ 1030mp ∼ 1025g,

which is 8 orders less than the solar mass. Obviously, this mass scale would rule out most

of the black holes in the universe. We therefore arrive at a conclusion that black hole

remnants might not serve to resolve the information paradox.

Is it possible for the D-bound to be corrected by GUP? Since there are some similarities

(in the sense of thermodynamics) between the cosmological horizon and black hole, we guess

that a log type correction, ln(Ac/A0), might appear in the r.h.s of (3.2). However, this

correction is too tiny to overset the conclusion from the D-bound.

4 Summary

This research explores an alternative expression for black hole thermodynamics in the sense

of GUP (1.1). We first consider a class of static and spherically symmetric black holes, and

work out the expressions for the temperature, entropy and heat capacity. These quantities

are expressed by (2.12), (2.16) and (2.19) respectively. The similar expressions are also

valid to a Kerr-Newman black hole. For example, the temperature expressions, (2.12)

and (2.36), can be expressed as a unified form (T = ~
′κ/2π).

Our analysis is based on a gedanken experiment that a particle is absorbed by the

black hole. The crucial problem is how to determine the characteristic size ρ0 in the

GUP for the black hole. In our opinion, ρ0 must be a quantity associated with the event

horizon, since the horizon is crucial for the black hole thermodynamics. For a class of

static and spherically symmetric black holes, ρ0 can be identified with r0 (∼
√

A) by

intuition. Although dimensional analysis suggests another possibility: the inverse surface

gravity κ−1,
√

A may be more consistent when a Kerr-Newman black hole is studied. Our

preference is based on the following observations. Firstly, as showed by (2.30), there are

two different axes by which the black hole surface is characterized as a confocal ellipsoid

in rectangular coordinates. ρ0 is indeed one of the axes and minimizes the change in

horizon area. Secondly, the proportionality between the horizon area and the absorption
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cross section means that ρ0 is the characteristic size in the absorption process. Thirdly, ρ0

represents the irreducible mass which is an invariant in a reversible process. This agrees

with the thermodynamic requirement that the entropy is unchanged in a reversible process.

The proposal that ρ0 ∼
√

A may be valid to other stationary black holes. As an

example, we consider a Kerr-Newman-(anti)de Sitter black hole, which is supposed to evolve

into a Reissner-Nordström-(anti)de Sitter case by decreasing the angular momentum via a

reversible process. The entropy of the latter is expressed as (2.17). Since the black hole’s

entropy and area are unchanged in a reversible process, the entropy of the Kerr-Newman-

(anti)de Sitter black hole is also expressed as (2.17). This suggests that the characteristic

sizes for both black holes should have a unified expression, i.e. ρ0 ∼
√

A.

This proposal may suffer a modification, if we consider the possibility that the absorp-

tion cross section is corrected by an extended GUP as follows [17, 25–27, 71]

∆x∆p ≥ 1 + α(∆p)2 + β(∆x)2. (4.1)

The β term represents the modification of gravity at large distances [17, 71], and |β|−1/2 is

usually interpreted as the (anti-)de Sitter radius.6 Without loss of generality, the revised

absorption cross section σ′
abs is a function of A,α and β, and it can be expanded as a series

of α and β. Some additional corrections of order β2 and α2 (as well as the higher order

terms) will be produced in the r.h.s. of (4.1), by identifying ρ0 with
√

σ′
abs. Therefore the

modification of the characteristic size is inessential, and ρ0 ∼
√

A is a good approximation

for the black hole thermodynamics.

The extended GUP (4.1) has been utilized to discuss the black hole thermodynamics

in the literature [17, 25–27], by identifying ∆p with the temperature directly. A better

understanding of (4.1) may be obtained by comparing the existing results with our argu-

ment. In particular, we hope to gain an insight into the link between (4.1) and cosmological

constant problem. This subject is beyond the scope of the present paper, and it will be

discussed in another work.
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